首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   29篇
  国内免费   7篇
  2024年   1篇
  2023年   6篇
  2022年   3篇
  2021年   13篇
  2020年   15篇
  2019年   13篇
  2018年   15篇
  2017年   8篇
  2016年   11篇
  2015年   12篇
  2014年   14篇
  2013年   19篇
  2012年   12篇
  2011年   23篇
  2010年   8篇
  2009年   13篇
  2008年   17篇
  2007年   12篇
  2006年   13篇
  2005年   16篇
  2004年   7篇
  2003年   13篇
  2002年   7篇
  2001年   6篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   6篇
  1993年   1篇
  1992年   1篇
排序方式: 共有299条查询结果,搜索用时 31 毫秒
31.
32.
ABSTRACT

The mechanical and structural properties of the extracellular matrix (ECM) play an important role in regulating cell fate. The natural ECM has a complex fibrillar structure and shows nonlinear mechanical properties, which are both difficult to mimic synthetically. Therefore, systematically testing the influence of ECM properties on cellular behavior is very challenging. In this work we show two different approaches to tune the fibrillar structure and mechanical properties of fibrin hydrogels. Addition of extra thrombin before gelation increases the protein density within the fibrin fibers without significantly altering the mechanical properties of the resulting hydrogel. On the other hand, by forming a composite hydrogel with a synthetic biomimetic polyisocyanide network the protein density within the fibrin fibers decreases, and the mechanics of the composite material can be tuned by the PIC/fibrin mass ratio. The effect of the changes in gel structure and mechanics on cellular behavior are investigated, by studying human mesenchymal stem cell (hMSC) spreading and differentiation on these gels. We find that the trends observed in cell spreading and differentiation cannot be explained by the bulk mechanics of the gels, but correlate to the density of the fibrin fibers the gels are composed of. These findings strongly suggest that the microscopic properties of individual fibers in fibrous networks play an essential role in determining cell behavior.  相似文献   
33.
34.
Asthma is a chronic inflammatory disease of the airways characterized by airway remodeling, which includes changes in the extracellular matrix (ECM). However the role of the ECM in mediating these changes is poorly understood. Hyaluronan (HA), a major component of the ECM, has been implicated in asthma as well as in many other biological processes. Our study investigates the processes involved in HA synthesis, deposition, localization and degradation during an acute and chronic murine model of ovalbumin (OVA)-induced allergic pulmonary inflammation. Mice were sensitized, challenged to OVA and sacrificed at various time points during an 8-week challenge protocol. Bronchoalveolar lavage (BAL) fluids, blood, and lung tissue were collected for study. RNA, HA, protein and histopathology were analyzed. Analyses of lung sections and BAL fluids revealed an early deposition and an increase in HA levels within 24 h of antigen exposure. HA levels peaked at day 8 in BAL, while inflammatory cell recovery peaked at day 6. Hyaluronan synthase (HAS)1 and HAS2 on RNA levels peaked within 2 h of antigen exposure, while hyaluronidase (HYAL)1 and HYAL2 on RNA levels decreased. Both inflammatory cell infiltrates and collagen deposition co-localized with HA deposition within the lungs. These data support a role for HA in the pathogenesis of inflammation and airway remodeling in a murine model of asthma. HA deposition appears largely due to up regulation of HAS1 and HAS2. In addition, HA appears to provide the scaffolding for inflammatory cell accumulation as well as for new collagen synthesis and deposition.  相似文献   
35.
When secreted from malignant cells, hyaluronan facilitates tumor invasion and metastasis, as inhibition of its export by zaprinast inhibited metastasis formation in mice. However, the precise steps of the metastatic cascade, which were influenced by zaprinast, have not been identified as yet. Here we analyzed the cell biological effects of the inhibitor on three human melanoma cell lines that differed in their hyaluronan production and their metastatic capability when xenografted into SCID mice. We measured the influence of zaprinast on cellular hyaluronan export, surface coat formation, proliferation, random migration, colony formation in soft agar, adhesion, and transepithelial resistance. Concentrations of zaprinast not affecting cell proliferation, adhesion and transepithelial resistance, nevertheless reduced hyaluronan export by 50%, surface coat formation, random migration, and colony formation in soft agar. These results indicate that hyaluronan enhances metastasis formation primarily in those steps of the metastatic cascade, which involves tumor cell migration.  相似文献   
36.
Proteoglycans comprise a core protein to which one or more glycosaminoglycan chains are covalently attached. Although a small number of proteins have the capacity to be glycanated and become proteoglycans, it is now realized that these macromolecules have a range of functions, dependent on type and in vivo location, and have important roles in invertebrate and vertebrate development, maintenance, and tissue repair. Many biologically potent small proteins can bind glycosaminoglycan chains as a key part of their function in the extracellular matrix, at the cell surface, and also in some intracellular locations. Therefore, the participation of proteoglycans in disease is receiving increased attention. In this short review, proteoglycan structure, function, and localizations are summarized, with reference to accompanying reviews in this issue as well as other recent literature. Included are some remarks on proteoglycan and glycosaminoglycan localization techniques, with reference to the special physicochemical properties of these complex molecules.  相似文献   
37.
38.
Growth differentiation factor-9 (GDF-9), a member of the transforming growth factor-β (TGF-β) superfamily, is expressed exclusively in the oocyte within the ovary and plays essential roles in the ovarian function in mammals. However, a possible involvement of GDF-9 in canine ovarian physiology that has a unique ovulation process among mammals has not been studied. Interestingly, we have isolated two types of cDNA clones generated by an alternative splicing from a canine ovarian total RNA. The predominant long form cDNA shares a common precursor structure with GDF-9s in other species whereas the minor short form cDNA has a 172 amino acid truncation in the proregion. Using a transient expression system, we found that the long form cDNA has a defect in mature protein production whereas the short form cDNA readily produces mature protein. However, mutations at one or two N-glycosylation sites in the mature domain of the short form GDF-9 caused a loss in mature protein production. These results suggest that the prodomain and N-linked glycosylation of the mature domain regulate proper processing and secretion of canine GDF-9. Based on the biological functions of GDF-9, these characteristics of canine GDF-9 could be causatively linked to the unique ovulation process in the Canidae.  相似文献   
39.
In this study, an injectable, biodegradable hydrogel composite of oligo[poly(ethylene glycol) fumarate] (OPF) was investigated as a carrier of mouse embryonic stem cells (mESCs) for the treatment of myocardial infarction (MI). The OPF hydrogels were used to encapsulate mESCs. The cell differentiation in vitro over 14 days was determined via immunohistochemical examination. Then, mESCs encapsulated in OPF hydrogels were injected into the LV wall of a rat MI model. Detailed histological analysis and echocardiography were used to determine the structural and functional consequences after 4 weeks of transplantation. With ascorbic acid induction, mESCs could differentiate into cardiomyocytes and other cell types in all three lineages in the OPF hydrogel. After transplantation, both the 24-hr cell retention and 4-week graft size were significantly greater in the OPF + ESC group than that of the PBS + ESC group (P < 0.01). Four weeks after transplantation, OPF hydrogel alone significantly reduced the infarct size and collagen deposition and improved the cardiac function. The heart function and revascularization improved significantly, while the infarct size and fibrotic area decreased significantly in the OPF + ESC group compared with that of the PBS + ESC, OPF and PBS groups (P < 0.01). All treatments had significantly reduced MMP2 and MMP9 protein levels compared to the PBS control group, and the OPF + ESC group decreased most by Western blotting. Transplanted mESCs expressed cardiovascular markers. This study suggests the potential of a method for heart regeneration involving OPF hydrogels for stem cell encapsulation and transplantation.  相似文献   
40.
For many years, a large body of circumstantial evidence supported the notion that the synovial membrane produced the hyaluronan-rich synovial fluid. A quantitative cytochemical technique for uridine-diphospho glucose dehydrogenase (UDPGD) activity established that fibroblast-like cells on the intimal surface of the synovial lining made a specific contribution to maintaining these glycosaminoglycan levels. Our studies have aimed to determine the mechanisms that control the attainment and persistence of this differentiated phenotype, and have recently focused on their appearance during joint cavity development in the embryonic limb; a process that is dependent upon skeletal movement. These in situ micro-biochemical studies have shown that cells bordering the presumptive joint cavity exhibit raised UDPGD activity, are associated with a matrix rich in hyaluronan and show immobilization-induced loss in such characteristics. Together with complimentary studies in adult joints, this suggests that mechanical stimuli promote the acquisition of this joint line-forming phenotype. For this reason our studies have attempted to identify the 'up-stream' mechano-dependent factors that control these events. Endothelial cells respond to mechanical stimuli by activating, via phosphorylation, mitogen activated protein kinase/extracellular signal-regulated kinase (MAPkinase/ERK). Using phospho-specific anti-ERK-1/2 antibodies we have shown that immunolabelling of developing limbs shows a clear joint line-selective activation during cavitation, with little if any labelling within neighbouring elements, and that this is abolished in immobilized limbs. In an attempt to facilitate the final mechanistic deciphering of these responses we have used an in vitro-based approach and found by Western blotting that active ERK-1/2 expression was increased in cultured articular surface cells following application of dynamic mechanical strain. Intriguingly, the use of a selective inhibitor (PD98059) of ERK activation by its classical activating kinase, Mek, to restrict such strain-induced increases, produced an enhanced strain-related increase in UDPGD mRNA expression. This suggests that mechano-dependent ERK activation serves a feedback regulatory role during differentiation of these cells. Whilst it is clear that these in vitro experiments serve a useful function, it is clear that they generally take little regard of the influence that might be provided by cell-cell and cell-matrix interactions within the developing limb's complex and dynamic environment and architecture. It is therefore imperative that we attempt to bridge the gap between the cell biology of such phenomena on the one hand, and the morphological approach to this same problem on the other.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号